- identity homomorphism
- мат.тождественный гомоморфизм
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Homomorphism — In abstract algebra, a homomorphism is a structure preserving map between two algebraic structures (such as groups, rings, or vector spaces). The word homomorphism comes from the Greek language: ὁμός (homos) meaning same and μορφή (morphe)… … Wikipedia
homomorphism — homomorphous, adj. /hoh meuh mawr fiz euhm, hom euh /, n. 1. Biol. correspondence in form or external appearance but not in type of structure or origin. 2. Bot. possession of perfect flowers of only one kind. 3. Zool. resemblance between the… … Universalium
Group homomorphism — In mathematics, given two groups ( G , *) and ( H , ·), a group homomorphism from ( G , *) to ( H , ·) is a function h : G → H such that for all u and v in G it holds that: h(u*v) = h(u) h(v) where the group operation on the left hand side of the … Wikipedia
Ring homomorphism — In ring theory or abstract algebra, a ring homomorphism is a function between two rings which respects the operations of addition and multiplication. More precisely, if R and S are rings, then a ring homomorphism is a function f : R → S such that … Wikipedia
Jacobi identity — In mathematics the Jacobi identity is a property that a binary operation can satisfy which determines how the order of evaluation behaves for the given operation. Unlike for associative operations, order of evaluation is significant for… … Wikipedia
Multiplier algebra — In C* algebras, the multiplier algebra, denoted by M(A), of a C* algebra A is a unital C* algebra which is the largest unital C* algebra that contains A as an ideal in a non degenerate way. It is the noncommutative generalization of Stone–Čech… … Wikipedia
Steenrod algebra — In algebraic topology, a branch of mathematics, the Steenrod algebra is a structure occurring in the theory of cohomology operations. It is an object of great importance, most especially to homotopy theorists. More precisely, for a given prime… … Wikipedia
Adjoint functors — Adjunction redirects here. For the construction in field theory, see Adjunction (field theory). For the construction in topology, see Adjunction space. In mathematics, adjoint functors are pairs of functors which stand in a particular… … Wikipedia
Ring (mathematics) — This article is about algebraic structures. For geometric rings, see Annulus (mathematics). For the set theory concept, see Ring of sets. Polynomials, represented here by curves, form a ring under addition and multiplication. In mathematics, a… … Wikipedia
Pseudo-ring — In abstract algebra, a rng (also called a pseudo ring or non unital ring) is an algebraic structure satisfying the same properties as a ring, except that multiplication need not have an identity element. The term rng (pronounced rung) is meant to … Wikipedia
Lie group — Lie groups … Wikipedia